A Modified Regularization Method for the Proximal Point Algorithm
نویسنده
چکیده
Under some weaker conditions, we prove the strong convergence of the sequence generated by a modified regularization method of finding a zero for a maximal monotone operator in a Hilbert space. In addition, an example is also given in order to illustrate the effectiveness of our generalizations. The results presented in this paper can be viewed as the improvement, supplement, and extension of the corresponding results.
منابع مشابه
A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملA Generalization of the Regularization Proximal Point Method
This paper deals with the generalized regularization proximal point method which was introduced by the authors in [Four parameter proximal point algorithms, Nonlinear Anal. 74 (2011), 544-555]. It is shown that sequences generated by it converge strongly under minimal assumptions on the control parameters involved. Thus the main result of this paper unify many results related to the prox-Tikhon...
متن کاملA Generalized Proximal-Point Method for Convex Optimization Problems in Hilbert Spaces∗
We deal with a generalization of the proximal-point method and the closely related Tikhonov regularization method for convex optimization problems. The prime motivation behind this is the well-known connection between the classical proximal-point and augmented Lagrangian methods, and the emergence of modified augmented Lagrangian methods in recent years. Our discussion includes a formal proof o...
متن کاملA Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012